C++ std--thread( Python中单线程、多线程和多进程的效率对比实验)
- 技术交流
- 2024-10-26 01:25:02
c++ 11 之后有了标准的线程库:std::thread。
之前一些编译器使用 C++11 的编译参数是 -std=c++11
g++ -std=c++11 test.cpp std::thread 构造函数默认构造函数 thread() noexcept;初始化构造函数template <class Fn, class... Args>explicit thread(Fn&& fn, Args&&... args);拷贝构造函数 [deleted] thread(const thread&) = delete;Move 构造函数 thread(thread&& x) noexcept;默认构造函数,创建一个空的 std::thread 执行对象。初始化构造函数,创建一个 std::thread 对象,该 std::thread 对象可被 joinable,新产生的线程会调用 fn 函数,该函数的参数由 args 给出。拷贝构造函数(被禁用),意味着 std::thread 对象不可拷贝构造。Move 构造函数,move 构造函数(move 语义是 C++11 新出现的概念,详见附录),调用成功之后 x 不代表任何 std::thread 执行对象。注意:可被 joinable 的 std::thread 对象必须在他们销毁之前被主线程 join 或者将其设置为 detached.
std::thread 各种构造函数例子如下:
#include <iostream>#include <utility>#include <thread>#include <chrono>#include <functional>#include <atomic>void f1(int n){ for (int i = 0; i < 5; ++i) { std::cout << "Thread " << n << " executing\n"; std::this_thread::sleep_for(std::chrono::milliseconds(10)); }}void f2(int& n){ for (int i = 0; i < 5; ++i) { std::cout << "Thread 2 executing\n"; ++n; std::this_thread::sleep_for(std::chrono::milliseconds(10)); }}int main(){ int n = 0; std::thread t1; // t1 is not a thread std::thread t2(f1, n + 1); // pass by value std::thread t3(f2, std::ref(n)); // pass by reference std::thread t4(std::move(t3)); // t4 is now running f2(). t3 is no longer a thread t2.join(); t4.join(); std::cout << "Final value of n is " << n << '\n';}std::thread 赋值操作Move 赋值操作thread& operator=(thread&& rhs) noexcept;拷贝赋值操作 [deleted]thread& operator=(const thread&) = delete;Move 赋值操作(1),如果当前对象不可 joinable,需要传递一个右值引用(rhs)给 move 赋值操作;如果当前对象可被 joinable,则会调用 terminate() 报错。拷贝赋值操作(2),被禁用,因此 std::thread 对象不可拷贝赋值。请看下面的例子:
#include <stdio.h>#include <stdlib.h>#include <chrono> // std::chrono::seconds#include <iostream> // std::cout#include <thread> // std::thread, std::this_thread::sleep_forvoid thread_task(int n) { std::this_thread::sleep_for(std::chrono::seconds(n)); std::cout << "hello thread " << std::this_thread::get_id() << " paused " << n << " seconds" << std::endl;}int main(int argc, const char *argv[]){ std::thread threads[5]; std::cout << "Spawning 5 threads...\n"; for (int i = 0; i < 5; i++) { threads[i] = std::thread(thread_task, i + 1); } std::cout << "Done spawning threads! Now wait for them to join\n"; for (auto& t: threads) { t.join(); } std::cout << "All threads joined.\n"; return EXIT_SUCCESS;}其他成员函数get_id: 获取线程 ID,返回一个类型为 std::thread::id 的对象。请看下面例子:
#include <iostream>#include <thread>#include <chrono>void foo(){ std::this_thread::sleep_for(std::chrono::seconds(1));}int main(){ std::thread t1(foo); std::thread::id t1_id = t1.get_id(); std::thread t2(foo); std::thread::id t2_id = t2.get_id(); std::cout << "t1's id: " << t1_id << '\n'; std::cout << "t2's id: " << t2_id << '\n'; t1.join(); t2.join();}joinable: 检查线程是否可被 join。检查当前的线程对象是否表示了一个活动的执行线程,由默认构造函数创建的线程是不能被 join 的。另外,如果某个线程 已经执行完任务,但是没有被 join 的话,该线程依然会被认为是一个活动的执行线程,因此也是可以被 join 的。
#include <iostream>#include <thread>#include <chrono>void foo(){ std::this_thread::sleep_for(std::chrono::seconds(1));}int main(){ std::thread t; std::cout << "before starting, joinable: " << t.joinable() << '\n'; t = std::thread(foo); std::cout << "after starting, joinable: " << t.joinable() << '\n'; t.join();}join: Join 线程,调用该函数会阻塞当前线程,直到由 *this 所标示的线程执行完毕 join 才返回。#include <iostream>#include <thread>#include <chrono>void foo(){ // simulate expensive operation std::this_thread::sleep_for(std::chrono::seconds(1));}void bar(){ // simulate expensive operation std::this_thread::sleep_for(std::chrono::seconds(1));}int main(){ std::cout << "starting first helper...\n"; std::thread helper1(foo); std::cout << "starting second helper...\n"; std::thread helper2(bar); std::cout << "waiting for helpers to finish..." << std::endl; helper1.join(); helper2.join(); std::cout << "done!\n";}detach: Detach 线程。 将当前线程对象所代表的执行实例与该线程对象分离,使得线程的执行可以单独进行。一旦线程执行完毕,它所分配的资源将会被释放。
调用 detach 函数之后:
*this 不再代表任何的线程执行实例。joinable() == falseget_id() == std::thread::id()另外,如果出错或者 joinable() == false,则会抛出 std::system_error。
#include <iostream>#include <chrono>#include <thread> void independentThread() { std::cout << "Starting concurrent thread.\n"; std::this_thread::sleep_for(std::chrono::seconds(2)); std::cout << "Exiting concurrent thread.\n";} void threadCaller() { std::cout << "Starting thread caller.\n"; std::thread t(independentThread); t.detach(); std::this_thread::sleep_for(std::chrono::seconds(1)); std::cout << "Exiting thread caller.\n";} int main() { threadCaller(); std::this_thread::sleep_for(std::chrono::seconds(5));}swap: Swap 线程,交换两个线程对象所代表的底层句柄(underlying handles)。
#include <iostream>#include <thread>#include <chrono>void foo(){ std::this_thread::sleep_for(std::chrono::seconds(1));}void bar(){ std::this_thread::sleep_for(std::chrono::seconds(1));}int main(){ std::thread t1(foo); std::thread t2(bar); std::cout << "thread 1 id: " << t1.get_id() << std::endl; std::cout << "thread 2 id: " << t2.get_id() << std::endl; std::swap(t1, t2); std::cout << "after std::swap(t1, t2):" << std::endl; std::cout << "thread 1 id: " << t1.get_id() << std::endl; std::cout << "thread 2 id: " << t2.get_id() << std::endl; t1.swap(t2); std::cout << "after t1.swap(t2):" << std::endl; std::cout << "thread 1 id: " << t1.get_id() << std::endl; std::cout << "thread 2 id: " << t2.get_id() << std::endl; t1.join(); t2.join();}执行结果如下:
thread 1 id: 1892thread 2 id: 2584after std::swap(t1, t2):thread 1 id: 2584thread 2 id: 1892after t1.swap(t2):thread 1 id: 1892thread 2 id: 2584native_handle: 返回 native handle(由于 std::thread 的实现和操作系统相关,因此该函数返回与 std::thread 具体实现相关的线程句柄,例如在符合 Posix 标准的平台下(如 Unix/Linux)是 Pthread 库)。
#include <thread>#include <iostream>#include <chrono>#include <cstring>#include <pthread.h>std::mutex iomutex;void f(int num){ std::this_thread::sleep_for(std::chrono::seconds(1)); sched_param sch; int policy; pthread_getschedparam(pthread_self(), &policy, &sch); std::lock_guard<std::mutex> lk(iomutex); std::cout << "Thread " << num << " is executing at priority " << sch.sched_priority << '\n';}int main(){ std::thread t1(f, 1), t2(f, 2); sched_param sch; int policy; pthread_getschedparam(t1.native_handle(), &policy, &sch); sch.sched_priority = 20; if(pthread_setschedparam(t1.native_handle(), SCHED_FIFO, &sch)) { std::cout << "Failed to setschedparam: " << std::strerror(errno) << '\n'; } t1.join(); t2.join();}执行结果如下:
Thread 2 is executing at priority 0Thread 1 is executing at priority 20
hardware_concurrency [static]: 检测硬件并发特性,返回当前平台的线程实现所支持的线程并发数目,但返回值仅仅只作为系统提示(hint)。
#include <iostream>#include <thread>int main() { unsigned int n = std::thread::hardware_concurrency(); std::cout << n << " concurrent threads are supported.\n";}std::this_thread 命名空间中相关辅助函数介绍get_id: 获取线程 ID。
#include <iostream>#include <thread>#include <chrono>#include <mutex>std::mutex g_display_mutex;void foo(){ std::thread::id this_id = std::this_thread::get_id(); g_display_mutex.lock(); std::cout << "thread " << this_id << " sleeping...\n"; g_display_mutex.unlock(); std::this_thread::sleep_for(std::chrono::seconds(1));}int main(){ std::thread t1(foo); std::thread t2(foo); t1.join(); t2.join();}yield: 当前线程放弃执行,操作系统调度另一线程继续执行。
#include <iostream>#include <chrono>#include <thread>// "busy sleep" while suggesting that other threads run // for a small amount of timevoid little_sleep(std::chrono::microseconds us){ auto start = std::chrono::high_resolution_clock::now(); auto end = start + us; do { std::this_thread::yield(); } while (std::chrono::high_resolution_clock::now() < end);}int main(){ auto start = std::chrono::high_resolution_clock::now(); little_sleep(std::chrono::microseconds(100)); auto elapsed = std::chrono::high_resolution_clock::now() - start; std::cout << "waited for " << std::chrono::duration_cast<std::chrono::microseconds>(elapsed).count() << " microseconds\n";}sleep_until: 线程休眠至某个指定的时刻(time point),该线程才被重新唤醒。
template< class Clock, class Duration >void sleep_until( const std::chrono::time_point<Clock,Duration>& sleep_time );sleep_for: 线程休眠某个指定的时间片(time span),该线程才被重新唤醒,不过由于线程调度等原因,实际休眠时间可能比 sleep_duration 所表示的时间片更长。
#include <iostream>#include <chrono>#include <thread>int main(){ std::cout << "Hello waiter" << std::endl; std::chrono::milliseconds dura( 2000 ); std::this_thread::sleep_for( dura ); std::cout << "Waited 2000 ms\n";}执行结果如下:
Hello waiterWaited 2000 ms来源:github.com/forhappy/Cplusplus-Concurrency-In-Practice/blob/master/zh/chapter3-Thread/Introduction-to-Thread.md
C++ std--thread( Python中单线程、多线程和多进程的效率对比实验)由讯客互联技术交流栏目发布,感谢您对讯客互联的认可,以及对我们原创作品以及文章的青睐,非常欢迎各位朋友分享到个人网站或者朋友圈,但转载请说明文章出处“C++ std--thread( Python中单线程、多线程和多进程的效率对比实验)”